
730 MONTHLY  WEATHER  REVIEW VO!. 97, No. 10 

UDC 551.515.33:551.509.327:551.~7.362.2(084.12)(76+77)"1969.06.26" 

PICTURE OF THE  MONTH 
Early Summer Tornado Situation 

FRANCES C. PARMENTER 

National Environmental Satellite Center, ESSA, Washington, D.C. 

The pictures comprising the sa,tellite mosaic (fig. 1) the severe weather  in the Midwest (fig. 2). These  systems 
were taken on June 26,  1969. The mosaic clearly depicts and  their  areas of influence are clearly marked by the 
three  distinct  synoptic regimes. A large high-pressure area various cloud patterns. 
dominates the  weather along the East Coast, while a Low The typical  multilayered cloudiness associated with a 
and an accompanying  frontal  system  are responsible for low-pressure area  can be seen a t  (A) in figure 1. The small 

FIGURE 1.-Mosaic of ESSA 9 pictures, Passes 1504-1505, 1901-2057 GYT on June 26,1969. 
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FIQURE 2.-Surface analysis, 2100 QMT on June 26,1969. 

area of cloudiness (B), south of the  center, reflects the 
presence of a  secondary  vorticity  center associated with 
this system. 

An  early morning APT ( automatic picture transmission) 
view of this  area showed low fog and  stratus  throughout 
the Gulf States. By the  time of these ESSA 9 satellite 
pictures,  heating had cleared the  stratus;  and a  large  area 
of fair-weather cumulus had formed. The northern edge of 
this  cumulus field (C-D) lies along the edge of the lowest 
elevations of the  Coastal  Plain.  Immediately west and 
parallel to  this cumulus field is  a long dark area of rela- 
tively clear skies ahead of the advancing frontal system. 

The bright  convective band (E-F) lies along the cold 
front  and  marks  the interface of warm  moist  air  from the 
south  and  the cold air associated with the advancing low- 
pressure  area. Radar  reports at  1945 GMT and 2045 GMT 
indicate that  the  tops of these  convective cells extend 
from 45,000 to  63,000 ft. Most of the severe weather was 
confined to the  southern  portion of this cloud band  (G). 
This convective cloud line has a  shape that  is  often ob- 
served with severe weather  outbreaks.  The line is  very 
narrow on its southwest or upwind  end and  broadens 
markedly  to  the  northeast.  Thirteen tornadoes and con- 
siderable wind and  hail  damage  occurred in this area 
between 1900 and 2300 GMT. 
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CORRESPONDENCE 

A Reliable  Method for the Numerical  Integration 
of a Large Class of Ordinary  and  Partial 

Differential Equations 

R. S. LINDZEN and H.-L. KUO 

Department of the  Geophysical Sciences, University of Chicago,  Illinois 

The purpose of this  note is to describe the simple ex- 
tension of a  popular  method of solving second-order 
ordinary differential equations  with two end-point  bound- 
ary conditions to  nth order  ordinary differential equations 
and  to  partial differential equations that are second order 
in one direction. The orginal method is simply  a version 
of Gaussian elimination;  and the extension (to be de- 
scribed) has, we have discovered, been published, slightly 
differently, before. We feel, however, that  the present 
note will be of value, since the extension has proven very 
useful to both of us, and is seldom used among numerical 
analysts  and meteorologists. 

We begin by reviewing second-order ordinary differ- 
ential  equations. Consider 

where 

df+alf=bl dx  a t  x = ~  

and 

df+a2j=b2 a t  x=l. dx 

In  finite differences this becomes 

where 

n 

and 

Dn=T(Xn). 
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6x is the grid interval used in finite-difference approxima- 
tion to equation (l), 

and 
A b f o + B b f , = D a ,  

A t f N - - l + B L f N = D t  

where N is the level number corresponding to x = 1 .  The 
solution of equation (2) (following Richtmyer, 1957) goes 
as follows: 

f n = a n f n + l + B n  (3) 

where an and On are newly introduced variables. Then 

f n - l = a n - l f n + B n - 1 .  (4) 

Substituting  equation (4) into (2) we obtain 

and 

Thus, knowing cyo, Bo we may readily  obtain  all a,'s and 
p i s .  From  the lower boundary condition 

and 

Equation (3) may  be used to  obtainf a t  all n's, provided 
we know jN.  With  the upper  boundary condition we have 

A t f N - - I + B t f N = D t -  (9) 
We also have 

j i V - I = a N - l f N + f l N - l *  (lo) 
These may  be solved to  obtain 

Thus our  solution  is  formally complete. The procedure is 
valid provided that 

A n a n - l + B n #  0 

for  all n. A sufficient condition for  this to  be so is that 

O<H,<--h<H* 
and 

z 
6 X < -  -G 

where G=max l g ( x ) l ;  H* and H* are positive constants. 
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These  are, however, by no means  necessary conditions. 
The  authors  have  yet to  find an inhomogeneous, well- 
posed problem for which the  method fails. In particular, 
many  wave-type problems where h>O have been solved. 
It should be  added that when h=constant  and g=O, 
beyond  a  certain  point in the  domain,  the  requirement 
of two  end  points  is  readily  extended  to  include  a  radiation 
condition. Let h=X2 for x>xl .  If we  wish our  solution 
to behave  as e*’’ beyond xl, then we simply impose 

dj/&=iXj 

a t  some x>xl as a  boundary condition.  Such an application 
may  be  found in  Lindzen (1968). Also, when h= --X2 the 
method  has  no difficulty in separating growing from 
decaying  solutions  (Carrier and Pearson, 1968). 

The extension of the  above  method to nth order  ordinary 
differential  equations is straightforward.  Consider 

For simplicity let  n  be even. Also, let there  be appropriate 
boundary  conditions at  x = O  and 1 .  What is meant  by 
appropriate will become  evident. Let 

dn-2 j 
j l  =&a 

Equation (13a) may  be  rewritten 

where  m=n/2.  Equation (12) becomes 

wheref,=f. Equations (13b) and (14) may  be rewritten 

d2 d 
dx2 - f+A(x) f+%(x)f=r(x) (15) 

where 

and 

92 94 g6 * 

- 1 0 0 0 . .  
0-1 0 0 . . 
0 0-1 0 . . 
I . . . .  . . . .  

Instead of equation  (2), we  now write 

Anf,-l+Bnfn+Cnfn+l=Dn (16) 

where equation (16) is the finite-difference approximation 
to (15); 

1 1 An=- I” &(x), (Sxy 262 

Bn=” 2 
(&)2 I + W X ) ,  

1 1 Cn= - 
( 6 W  

Dn=r(xn) 

I +% 4 3  ; 

and instead of equation (3), we write 

fn=anfn+l+Bn (17) 

where an is .now an  (42) X (n/2) matrix  and 0, is as  an 
n-dimensional  vector. It is easily shown that 

an=-((G,an-l+Bn)”Cn (18) 
and 

Bn=(Anan-l+Bn)-’(Dn-AnIn-l) .  (19) 

Thus, if we obtain a. and Bo from  our  boundary  condition 
at  x=O, we may readily obtain all the  other a i s  and 
B ~ s .  A t  each step, however, we must  invert  an (42)  X (42) 
matrix.  For n l 8 ,  this is a trivial matter.  Even for n2180, 
share routines (involving Gaussian  elimination) are re- 
markably effective. As before, the value of fN is obtained 
from  the  upper  boundary condition  together  with the 
equation 

fN-l=aN-lfN+bN-I. 

It should be  added that  many high-order differential 
equations  result  from combining several lower order  dif- 
ferentials. Thus, a set of second-order equations may pre- 
sent themselves in the course of analysis-prior to  the 
derivation of the  single nth order  equation. 

Although we are  not  normally  interested  in  180th  order 
ordinary differential  equations, the  limit becomes quite 
meaningful  when we come to  partial diEerentia1 equations. 
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Consider an equation of the  form with and  without critical levels, the propagation of 
internal  gravity waves with arbitrary  distributions of 

Newtonian cooling and  thermal  excitation,  and  the non- 

where J u , z  is a differential operator of arbitrary order in linear flows in  the  boundary  layer of a  vortex. The  method 
y-but of no  greater than first order in x. The finite- has also been used by Matsuno  (personal  communication) 
difference form of equation (20) is  also given by (16) where, to  study  the propagation of internal  Rossby waves in an 
however, f, is now the  set of the values off at  the nth level atmosphere  with an  arbitrary  distribution of zonal wind 

in x at all the grid points in y. The  boundary conditions  with latitude  and  altitude.  The  results of all these calcu- 
at  x=O, 1 (or any  other two points) are introduced  as M o n s  will be published separately. In each case, how- 
before; the  boundary  conditions at y=O, l are included ever,  all the matrices  to be inverted were of low condition 
in A,, B,, C,, D,. The present  method  appears to be number,  and  accurately  and easily inverted using stand- 
genuinely insensitive to  equation (20)’s type.  Several ard “share”  routines. 
problems & , h  mixed hyperbolic-elliptic equations  have As a comment, we should state  that  many equations 
been solved with no difficulty. It is. our impression that of the  form of equation (20) are more efficiently solved by 
whenever equation (20) together with its  boundary condi- relaxation  methods.  Moreover, when equation (20)’s x and 

determine it. I n  this  respect,  our  method  appears  superior is to Fourier  transform out one of the dependencies and 

that are not purely elliptic. our method is similar to those  order  ordinary  differential  equations. The virtue of the 
described by  eornock (1954), Karlqvist ( 1 9 ~ 2 ) ~  and  present  method is not  that it is the  most  efficient  method, 
Schechter (1960) in connection with the solution of par- but that it appears to be generally 
ticular partial differential equations. While the application 
of the method to high-order ordinary differential equations 
is obvious, we are  not  familiar  with earlier references in ACKNOWLEDGMENTS 
this connection. The  disadvantage of our  method  (minor R. s. Lindzen and H.-L. Kuo wish t o  acknowledge the  support of 
for OUT purposes) is that it requires the inversion of N NSF  Grants GA 1622 and GA 1339 respectively. 
(where N= the  number of levels) J X  J matrices (where J 
is  either the  number of grid points in the y-direction, or- 
in  the case of ordinary  differential equations-one-half 
the order of the differential  equation), and  the  storage of 
N J ~ J  and N J-dimensional vectors for use in Carrier, G. F., and Pearson, C. E., Ordinary  Diferential  Equations, 

the backward sweep. In   an elegant extension of the method Cornock, A. F., “The Numerical Solution of pOisson~s  and  the 
described here, Schechter (1960) reduced the solution Of Biharmonic Equations by  Matrices,” Proceedings  ofthe  Cambridge 
the system of equations (16) to  the inversion of a sbgle Philosophical  Society, Vol. 50, Pt. 4, University Press, Cambridge, 
J X  J matrix. Schechter’s method  has, however, a serious Oct. 1954, PP. 524-535. 
disadvantage,  the number of levels increases, the condi- Karlqvist, O., “Numerical Solution of Elliptic  Difference Equations 

tion  number of the  matrix to be  inverted increases. If the 3,4-384. 
by Matrix Methods,” Tellus, Vol. 4, No. 4, Nov. 1952, pp. 

equation  to be inverted  is  hyperbolic over a signscant Lindzen, R. s., “The Application of Classical Atmospheric Tidal 
part of its domain, the rise in condition  number  can  be Theory,” Proceedings of the Royal Society of London, Ser. A, 
astronomical-the matrix becoming uninvertible  for Vol. 303, No. 1474, Mar. 1968, PP. 299-316. 
practical purposes. Thus,  SchechterJs  method  is  type- Richtmyer, R. D., Diference  Methods for Initial-Value  Problems, 

sensitive . Interscience  Press, New York, 1957, 238 pp. 
Schechter, S., “Quasi-Tridiagonal Matrices and Type-Insensitive 

fully used by  the  authors to investigate the propagation N ~ .  3, William Byrd  Press,  Inc.,  Richmond, Va., Oct. 1980, 
of planetary scale equatorial waves through  shear zones pp. 285-295. 

_a_zf, ax2  J , , z [ f l=r(y ,X)  (20) temperature, viscosity, conductivity,  anisotropic ion drag, 

Lions has.  a  continuous  solution the  present  method will 7J dependence is separable, a common method of solution 

to  iterative procedures which usually fail  for operators use the Present method for Solving the resulting second- 
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